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Abstract. We find the energy levels of a free particle confined in a two dimensional infinite potential well
having super-circular boundary (|x|n + |y|n = an where n is a rational number and a is a positive real
number) by perturbing about the equivalent circle (n = 2). The ground state energies are very accurate
over a wide range of n and can be improved further by introducing a phenomenological constant determined
from the knowledge of exact results available for diamond (n = 1). For excited states, we find that the
shape effect can cause parametric resonance which can lead to singlet-triplet crossing.

PACS. 03.65.-W Quantum mechanics – 31.15.Md Perturbation theory – 03.65.Ge Solutions of wave
equations: bound states

1 Introduction

The energy levels of a quantum free particle confined in
a two-dimensional box can be determined exactly only in
the special cases of the triangle, square (rectangle) and the
limiting case of the circle. Solutions are quite simple for
square and circle but for the triangle, the problem is more
involved [1]. The problem of the regular polygonal box has
been solved by perturbing about the equivalent circle and
the results have been very accurate [2]. Here we address
the problem of finding out the energy eigen-values of a par-
ticle confined in a two dimensional infinite potential well
having super-circular boundary. This is a particularly nice
instance of obtaining a solution by perturbing a bound-
ary for which the problem is soluble. This is of relevance
because it is becoming possible to confine particles in re-
gions of various shapes. Two dimensional quantum dots
are generally taken to have circular symmetry. However, a
circular symmetry cannot be guaranteed in practice. Ac-
cordingly probes have been constructed to determine the
shape of the dots [3–5]. In this context, the study of shape
dependence of energy levels ought to be useful.

Quantitative definition of aromaticity has been pro-
posed using π molecular orbital (MO) theories as the sim-
ple Hückel and Pariser-Parr-Pople and its related meth-
ods. The difference in energy between an annulene and
its reference linear polyene has been used to judge the
extent of aromaticity of a compound. However mathe-
matical relationship between the Hückel theory and free
electron model has been probed in various ways which
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confirms that the Hückel MO theory and particle in a box
(PIAB) model are simply different ways of solving the
same Schödinger equation [6]. Consequently, PIAB model
correctly reproduce the 4n + 2 or 4n rule for aromatic-
ity and anti-aromaticity respectively by just calculating
the difference of energies of the molecule treating it as
a linear one and the cyclic one. But the regular circular
structure is not guaranteed for various kind of cyclic con-
jugated polyenes. In these cases certain variants of shape
are encouraged which will give the correct description of
the molecule. Again the allowed or forbidden pathways of
certain pericyclic reactions (cycloaddition reactions, ele-
crocyclic reactions and sigmatropic rearrangements) can
be judged by looking at the aromatic nature of the transi-
tion states (TS) [7]. As the TS may be of various geome-
tries, the study of shape dependent energy levels would be
of immense interest.

Super-circle is a special case of super-ellipse, popularly
known as Piet Hein super-ellipse [8] after the name of Piet
Hein, a famous Danish architect, poet and scientist. The
equation of a super-ellipse is given by the Lamé equa-
tion [9],

|x|n
an

+
|y|n
bn

= 1 (1.1)

with n > 0 and rational. The constants a and b are posi-
tive real numbers. Super-ellipses are also known as Lamé
curves or Lamé ovals [10]. They can be parametrically de-
scribed as

x = a cos
2
n (t)

y = b sin
2
n (t). (1.2)
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Table 1. Different closed curves.

n curve (a = b)
<1 asteroid
1 diamond
2 circle

>2 super-circle
∞ square

For n greater than 2, we take only the real positive values
of cos

2
n (t) and sin

2
n (t) in equation (1.2) for 0 ≤ t ≤ π

2 and
use the symmetry of the figure to continue to the other
quadrants. If n is a rational number, then the super-ellipse
is algebraic. However for irrational n, it is transcendental.
For even integer, the curve becomes closer to a rectangle
as n increases. Gielis [11] has considered the further gener-
alization of the super-ellipse given in polar coordinates by,

r(θ) =

[∣∣∣∣cos(1
4mθ)
a

∣∣∣∣
n2

+
∣∣∣∣sin(1

4mθ)
a

∣∣∣∣
n3
]− 1

n1

. (1.3)

Introduction of the parameter m and use of polar coordi-
nates give rise to curves with m-fold rotational symmetry,
n1, n2, n3 and n4 are positive and rational.

We will treat these patterns or shapes as systematic
variants on the circular shape. When a = b, we get a super-
circle. For different values of n we get different closed
curves as shown in Table 1. Confining a particle in a super-
circle gives rise to a super-circular billiard. The classical
dynamics of a particle confined in such a billiard [14–16] is
an interesting problem which has been extensively studied
for certain shapes, but not yet been systematically stud-
ied. For n < 1, i.e. for asteroidal shapes, the dynamics
is expected to be strongly chaotic and the corresponding
quantum problems should be of interest in the study of
quantum chaos.

The Schrödinger equation for an infinite potential
well is

�
2

2m

(
∂2

∂x2
+

∂2

∂y2

)
ψ + Eψ = 0. (1.4)

So the problem reduces to solving the Helmholtz equa-
tion [17,18] with the Dirichlet condition ψ = 0 on the
boundary of the super-circular region. Exact solutions can
be obtained for some special cases and the usual proce-
dure for finding an exact solution is to find a curvilinear
coordinate [19,20] system where the locus of one of the
coordinates is a super-circle, and the wave-function is sep-
arable for that particular coordinate system. The special
case for which exact solutions can be obtained are the
square [21] (n = ∞, using Cartesian coordinate system),
the circle [23] (n = 2, using polar coordinate system) and
the diamond (n = 1, using Cartesian coordinate system,
diamond can be obtained from square by a 45◦ rotation).
In the case of the circle we write Ψ(r, θ) = R(r)Φ(θ), where
R(r) is the radial part of the wavefunction and Φ(θ) is
the corresponding angular part which depends on θ. Sep-
aration of variable gives the radial function R(r) to be

solutions of Bessel’s function [17], given by

d2R

dρ2
+

1
ρ

dR

dρ
+
(

1 − ν2

ρ2

)
R = 0 (1.5)

where ρ = kr, k =
√

2mE
�2 and ν is an integer which

appears in the angular part of the wave functions. The
restriction to integer is a consequence of the requirement
of single-valuedness for φ where

Φ(φ) = e±iνφ. (1.6)

The circular symmetry of the problem demands only a
circular symmetric ground state as the solution of the
Schrödinger equation. Hence we take ν = 0, which means
that the solutions are given by Bessel’s functions of zero
order. The value of k is determined from the boundary
condition and is given by roots of J0(ρ) for circular bound-
ary of radius R. Consequently the ground state energy is
given by

E0 =
�

2

2m

(
2.4048
R

)2

=
�

2

2mR2
5.783. (1.7)

No curvilinear coordinate system can be found where the
locus of one of the coordinates is any super-circle for ar-
bitrary values of n. A non-curvilinear coordinate system
will yield a partial differential equation which would be
difficult to solve by separation of variables. Hence we use
a variant of the standard perturbative technique [21] to
solve this problem. In the problems of practical interest
(quantum dot), the deviation from the circular shape will
be small. The result that we obtain can be used as a di-
agnostic for determining how “circular” a circular dot is.
Variants from the circular shape will lead to change in the
frequency spectrum. In fact, the effect can be dramatic in
the case of parametric resonance.

Perturbation theory is a common tool in the study of
eigenvalue problems. A classic case of an eigenvalue prob-
lem is the time-independent Schrödinger equation, which
can be written as

Hψ = − �
2

2m
∇2ψ + V ψ = Eψ (1.8)

where H is called the Hamiltonian, m is the mass of the
particle whose wave functions are given by ψ(r) and whose
eigen-energy is E. The problem is to find the allowed en-
ergies En and the corresponding wave-functions ψn. The
energies En are generally discrete and forced by bound-
ary conditions of the problem. There are very few situa-
tions where E and ψ can be exactly determined. Primary
among them are the cases of (i) particle confined in a box,
(ii) particle confined by a harmonic potential and (iii) par-
ticle confined by Coulomb potential. The shape-invariant
potentials [22] for which exact solutions can be found are
certain variations on the above set. If we denote the Hamil-
tonian for which an exact solution can be found by H0,



N. Bera et al.: Energy levels of a particle confined in a super-circular box 43

Table 2. Calculated ground state.

n (E0)n (n = 2 approx) E (numerical) E (perturbative) % error
0.8 2.0340 2.3288 2.3645 1.5
1.0 1.5715 1.6927 1.7080 0.9
1.2 1.3334 1.3863 1.3894 0.2
1.4 1.1969 1.2148 1.2181 0.3
1.6 1.1075 1.1103 1.1141 0.3
1.8 1.0468 1.0427 1.0481 0.5
2.0 1.0000 0.9967 1.0000 0.3
2.5 0.9296 0.9314 0.9331 0.2
3.0 0.8891 0.8997 0.9022 0.3
5.0 0.8270 0.8621 0.8551 −0.8
10.0 0.7970 0.8597 0.8434 −1.9
20.0 0.7887 0.8517 0.8452 −0.8
50.0 0.7862 0.8516 0.8495 −0.2
100.0 0.7858 0.8516 0.8511 0.1

then an arbitrary Hamiltonian H , can be written as

H = H0 + λH ′ (1.9)

where λ is a parameter and H ′ is called the perturbing
Hamiltonian. In this case if the eigenvalue of H0 be de-
noted by En

(0) and the eigen functions by ψ
(0)
n then the

eigenvalues En of H can be written in a power series ex-
pansion as

En = E(0)
n + λE(1)

n + λ2E(2)
n + ... (1.10)

E(1)
n = 〈ψ(0)

n |H ′|ψ(0)
n 〉 (1.11)

E(2)
n =

∑
l �=n

|〈ψ(0)
n |H ′|ψ(0)

l 〉|2
E

(0)
n − E

(0)
l

(1.12)

and so on. These expressions are valid when the state ψ(0)
n

is non-degenerate which is always true for the ground state
of the circle. In our case, it is not the Hamiltonian that is
perturbed. Rather it is the boundary conditions which are
being changed. We cannot cast our problem as a calcula-
tion of the matrix elements of H ′. We can always resort
to numerical integrations to obtain the energy eigenval-
ues in this case. The standard algorithm for the solution
of a partial differential equation (PDE) with the finite el-
ement method (FEM) [24,25] involves three main steps.
First, the domain, on which the PDE should be solved,
is discretized into finite elements. The solutions of the
PDE are approximated by piecewise continuous polyno-
mials and the PDE is thereby discretized and split into a
finite number of algebraic equations. The aim is to deter-
mine the unknown coefficients of these polynomials in such
a way, that the distance (which is defined by the norm in
a suitable vector space) from the exact solution becomes a
minimum. Therefore, the finite element method is essen-
tially a minimization technique for variational problems.
Since the number of elements is finite, the problem is re-
duced to calculating a finite number of coefficients of the
polynomials instead of finding a continuous solution for
PDE.

The algorithm followed to solve this problem is differ-
ent from the standard one and this was necessitated by

the nature of the problem. In our boundary value prob-
lem, the wavefunction vanishes at the boundary. So, the
set of algebraic equations obtained by using the standard
finite element method do not have any constant term in
them and therefore it is possible to get non-trivial values
for the wavefunction in the region inside the infinite poten-
tial well. This means one should put some constraints on
the values, the wave function can take. The obvious choice
is the normalization condition. Hence the algorithm used
in this case involves the following steps:

1. calculation of the finite difference replacement of the
Hamiltonian (in this case the two dimensional Lapla-
cian),

2. discretization of the region using square grids,
3. compilation of the set of finite difference equations cor-

responding to the Schrödinger equation for an infinite
potential well in two dimension,

4. calculation of the matrix representation of the
Hamiltonian operator from the set of algebraic equa-
tions,

5. calculation of the eigenvalues and normalized eigenvec-
tors of the matrix.

A point to be noted regarding the above algorithm. A
square grid was used for simplicity of computation. A tri-
angular grid may yield better results. The numerical re-
sults for the ground state energy for various values of n
are exhibited in the appropriate column of Table 2.

In Section 2, we calculate the ground state energy
for the particle in a super-circular box by considering
the equivalent circle of equal area. This already yields a
ground state energy within 10% of the exact answer for
all values of n ranging from n = 1 to n = ∞ (Tab. 2).
Consequently it makes sense to consider a perturbation
in shape around the equivalent circle i.e. around n = 2.
For the ground state, we can supplement the perturbation
theory with added information from the diamond (n = 1).
Hence, we can arrive at a formula which allows a good de-
scription for the ground state energy for all values of n.
We treat the excited states in Section 3. For the excited
states, we can only use perturbation theory without the
additional constraints. Hence we can discuss the shapes
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for which n � 2. However, the excited states bring in a
new element — the possibility of parametric resonance.
This allows the level crossing for shapes which are close
to n = 2 and hence should be experimentally observable
for confinement in quantum dots where shapes are slightly
deviant from the circle. A discussion of the results follows
in Section 4.

The equivalent circle or square is a figure which has
an area equal to that of the super-circle. The super-circle
covers the area

An = 4
∫ a

0

(an − xn)
1
n dx =

2a2

n

[Γ ( 1
n )]2

[Γ ( 2
n )]

. (1.13)

A circle, which covers the same area An, has a radius Rn

following from πRn
2 = An or

Rn = a

√
2
πn

Γ ( 1
n )√

Γ ( 2
n )
. (1.14)

The ground state energy equation (1.7) of a circle (c) of
radius Rn of equation (1.14) is

Ec
0,n =

πn

2
Γ ( 2

n )
[Γ ( 1

n )]2
K

a2
, K =

�
2

2m
(2.4048)2. (1.15)

This constitutes the first approximation to the ground
state energy for all values of n. The efficacy of this approx-
imation is shown in Table 2, where the numerical value of
the ground state energy are shown in the second column.
The results for Ec

0,n are given in the first column of Ta-
ble 2. We note that Ec

0,n is exact for n = 2 as expected,
while for n = 3, it yields Ec

0,3 = 0.8891 as opposed to the
numerical value of 0.8997. The closeness suggests that a
perturbative treatment around n = 2 should improve the
agreement. We note from Table 2, that the ground state
energy decreases continuously with increasing value of n.
This can be understood from equation (1.13), where we see
that the confining area becomes larger for increasing n. In-
creasing the area allows us to decrease the mean square
momentum fluctuations and thus the energy decreases.

2 Perturbation about the equivalent circle
for the ground state

The super-circle is given in polar coordinates by

r =
a

(cosn(θ) + sinn(θ))
1
n

. (2.1)

For ∆r = r −R, it results in

∆r

R
=

[√
nπ

2
[Γ ( 2

n )]
1
2

Γ ( 1
n )

1
[cosn(θ) + sinn(θ)]

1
n

]
− 1. (2.2)

Here R is the radius of the equivalent circle. Now we want
to perturb the problem around n = 2. Writing the terms

of equation (2.2) in a power series of ε(ε = n − 2) and
collecting terms up to first order, we get

∆r

R
=
ε

4

[
Ψ

(
1
2

)
+ 1 − Ψ(1)

]

− ε

4
[
cos2(θ) log(cos2(θ)) + sin2(θ) log(sin2(θ))

]
. (2.3)

Now we need to express the above equation in terms of a
Fourier series as

∆r

R
=

∞∑
l=0

Cl cos(lθ), (2.4)

where C0 = 0 as the areas of the circle and the super-circle
are equal. Non-zero values of Cl exist when l is a integral
multiple of 4 such as C4 = − ε

12 , C8 = − ε
120 , C12 = − ε

420 ,
C16 = − ε

1008 , C20 = − ε
1980 , C24 = − ε

3432 , and so on.
The shape of the boundary now depends on the polar

angle θ and hence an isotropic ground state is not ad-
missible, since it cannot vanish everywhere on the bound-
ary. Accordingly, the first correction to the n = 2 wave
function will have an angular dependence which can be
expanded as the trigonometric basis set to write

ψ(r) = J0(k0r) +
∞∑
l=0

Dl(r) cos(lθ)

= J0(k0r) + ψ1(r, θ), (2.5)

where ψ1(r, θ) =
∑∞

l=0Dl(r) cos(lθ) is the first order cor-
rection to the wave-function, k2

0 = 2mE0
�2 and E0 is the

ground state energy of the circle. From the normalization
of ψ(r) and ψ0(r), we can easily see that D0(0) = 0 iden-
tically. The first order Schrödinger equation now can be
written as

− �
2

2m
∇2ψ1 = E0ψ1 + E1ψ0 (2.6)

and the boundary condition

ψ(R +∆r) = 0. (2.7)

Expanding in Taylor series up to the first order in Cl

J0(k0R) + k0R
∆r

R
J ′

0(k0R) + ψ1(R, θ) = 0. (2.8)

Now J0(k0R) = 0, as it is the solution of the circle. Hence,
using the expression of ψ1

∞∑
l=0

Dl(R) cos(lθ) = −k0RJ
′
0(k0R)

∞∑
l=1

Cl cos(lθ). (2.9)

Clearly

Dl(R) = −k0RJ
′
0(k0R)Cl. (2.10)
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From equations (2.5), (2.6), we can write

− �
2

2m

[ ∞∑
l=0

d2Dl(r)
dr2

cos(lθ) +
∞∑
l=0

1
r

dDl(r)
dr

cos(lθ)

−
∞∑

l=0

l2

r2
Dl(r) cos(lθ)

]
=

E0

∞∑
l=0

Dl(r) cos(lθ) + E1J0(k0r). (2.11)

For l = 0

− �
2

2m

[
d2D0(r)
dr2

+
1
r

dD0(r)
dr

]
= E0D0(r) + E1J0(k0r),

(2.12)
while for l �= 0

− �
2

2m

[
d2Dl(r)
dr2

+
1
r

dDl(r)
dr

− l2

r2
Dl(r)

]
= E0Dl(r).

(2.13)
The solution of equation (2.13)

Dl(r) = AlJl(k0r), (2.14)

where Al is a constant, fixed by the boundary condition in
equation (2.10). As for equation (2.12) we note that the
complementary function in the solution is J0(k0). This
vanishes on the boundary r = R. Hence the particular
integral has to vanish at r = R. This makes E1 = 0. The
first correction E1 will be nonzero for a few selected cases
— these are the parametric resonance caused by the shape
variation. Thus at the first order, the ground state energy
is unchanged while the wave function becomes

ψ(r) = J0(k0r) +
∞∑
l=0

Dl(r) cos(lθ)

= J0(k0r) −
∞∑
l �=0

AlJl(k0r) cos(lθ)

= J0(k0r) −
∞∑
l �=0

Cl
Jl(k0r)
Jl(k0R)

k0RJ0
′(k0R) cos(lθ).

(2.15)

The reasonability of the wave function is discussed in Sec-
tion 4.

To get the first correction to the energy we need to
proceed to the second order. The wave function to this
order can be written as

ψ(r) = J0(k0r) +
∞∑
l=0

Cl
Jl(k0r)
Jl(k0R)

k0J0
′(k0R) cos(lθ)

+
∞∑

l=0

Gl(r) cos(lθ). (2.16)

To determine the energy correction E2, we need G0(R)
alone. This can be seen from the fact that to satisfy the

Schrödinger equation to the second order of smallness,

− �
2

2m
∇2ψ2 = E0ψ2 + E2ψ0 (2.17)

and the only part which involves the energy E2 is the
purely r-dependent part of ψ2 which is given by G0(r).
Thus G0(r) satisfies the equation

(∇2 + k2
0)G0(r) = −2mE2

�2
ψ0 (2.18)

or, (
d2

dρ2
+

1
ρ

d

dρ
+ 1
)
G0(ρ) = −E2

E0
J0(ρ), (2.19)

where ρ = k0r. The boundary condition on G0(ρ) is
obtained from equation (2.17). The boundary condition
needs to be satisfied to order C2

l and the Taylor series
expansion to the required order gives

∞∑
l=0

Gl(r) cos(lθ) = (k0R)2J ′
0(k0R)

∞∑
l=0

C2
l

J ′
l (k0R)
Jl(k0R)

cos2(lθ)

− (k0R)2

2
J ′′

0 (k0R)
∞∑

l=0

C2
l cos2(lθ).

(2.20)

Using the identity

J ′′
0 (k0R) = −J

′
0(k0R)
(k0R)

, (2.21)

when J0(k0R) = 0, we can reduce equation (2.20) to

∞∑
l=0

Gl(r) cos(lθ) =

(k0R)
2

2

J ′
0(k0R)

∞∑
l=0

C2
l

J ′
l (k0R)
Jl(k0R)

(1 + cos(2lθ))

+
(k0R)

4
J ′

0(k0R)
∞∑

l=0

C2
l (1 + cos(2lθ)) . (2.22)

Equating the θ independent terms, we get,

G0(k0R) =

(k0R)2

4

[ ∞∑
l=0

C2
l

(
2J ′

l (k0R)
Jl(k0R)

+
1
k0R

)
J ′

0(k0R)

]
. (2.23)

For large l, J′
l(k0R)

Jl(k0R) = l
k0R and to leading order in l

G0(k0R) =
(k0R)2

2
J ′

0(k0R)
k0R

∞∑
l=0

lC2
l

= − (k0R)
2

J1(k0R)
∞∑

l=0

lC2
l , (2.24)
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as J ′
0(k0R) = −J1(k0R). We now need to solve equa-

tion (2.19). The homogeneous solution has to be J0(k0R),
the other linearly independent solution being ill behaved
at r = 0 and is not acceptable. Denoting the particular
integral by P (k0r), we can write

G0(ρ) = AJ0(ρ) + P (ρ), (2.25)

where the constant A can be determined by requiring
G0(ρ) to be orthogonal to the zeroth order solution J0(ρ)
over the original circle. The boundary condition of equa-
tion (2.24) gives

P (k0R) = − (k0R)
2

J1(k0R)
∞∑

l=0

lC2
l . (2.26)

Now putting the values of coefficients Cl, and k0R =
2.4048, we get

P (k0R) = −0.01745ε2. (2.27)

To find the particular integral, the simplest procedure is
to try a power series expansion

P (ρ) =
∞∑

l=1

alρ
2l. (2.28)

Expanding J0(ρ) and P (ρ) up to the tenth power of ρ and
putting ρ = k0R, we get

P (k0R) = −E2

E0

[
0.25(k0R)2 − 0.03125(k0R)4

+ (1.302 × 10−3)(k0R)6 − (2.7125× 10−5)(k0R)8

+ (3.3907× 10−7)(k0R)10
]
. (2.29)

Inserting the value of (k0R) = 2.4048 in equation (2.29),
we find

P (k0R) = −E2

E0
0.62421. (2.30)

From equations (2.27) and (2.30)

E2

E0
= 0.027955ε2 (2.31)

and the total energy up to second order correction

E = E0 + E1 + E2

E = E0(1 + 0.027955ε2) (2.32)

as E1 = 0. Hence the ground state energy for the ground
state of the super-circle up to second order correction is,

E =
�

2

2m
(2.4048)2

R2

(
1 + 0.027955ε2

)
. (2.33)

When ε = n − 2 is negative, we have incorporated the
next correction empirically by introducing a phenomeno-
logical ε4 term which is designed in such a way that it will

give exact answer at n = 1. Hence the energy expression
becomes

E =
�

2

2m
(2.4048)2

R2

(
1 + 0.027955ε2 + 0.0577ε4

)
,

ε < 0. (2.34)

For ε > 0 i.e. n > 2, we need to go as far as n = ∞. Pertur-
bation theory may appear useless, but we can use a form
of duality. For n > 2, we define a fraction m (1 ≤ m ≤ 2)
such that 1

m + 1
n = 1. Using equation (1.15), we now ar-

rive at

E(n)

E(m)
= (n− 1)

Γ ( 2
n )

Γ (2 − 2
n )

[
Γ (1 − 1

n )
Γ ( 1

n )

]2
, (2.35)

which leads to

E(n) = n
Γ ( 2

n )[
Γ ( 1

n )
]2 �

2

2m
(2.4048)2

π

2

×
[
1 + 0.027955

(
n− 2
n− 1

)2

+ 0.0577
(
n− 2
n− 1

)4
]
.

(2.36)

The results from equations (2.35, 2.36) are shown in Ta-
ble 2. For excited states, we cannot exploit the benefit
of “exact” results but the interest there lies in the fact
that for very small values of ε i.e. within the realm of per-
turbation theory, parametric resonance can induce large
scale changes. We note in passing that the three dimen-
sional cylindrical box with a super-circular cross section
and of height L can be easily handled because the prob-
lem would be separable in the Z-coordinate and the X−Y
plane. While the X −Y plane problem is to be treated as
discussed, the energy formula of equations (2.34 and 2.35)
will have an additional contribution of π2

�
2

2mL2 from the con-
finement in the Z-direction.

3 Perturbation theory for the excited states
and parametric resonance

In this section we would like to develop the perturbation
theory for the excited states. The excited states come in
two varieties–degenerate (l �= 0) and nondegenerate (l =
0). We begin with the states with finite value of l. The
unperturbed energy for such a state can be written as

E =
�

2k2
ln

2m
, (3.1)

where kln is obtained from the nth zero of Jl(kr). The
degenerate wave-functions at this order can be written as
AlJl(klnr) cos(lθ) and BlJl(klnr) sin(lθ), where Al and Bl

can be found from the normalization condition. Since our
shape variation can be expressed as a series in cosines
alone, the sine solution will be unaffected. It is the cosine
solution that will be subjected to perturbation. The first
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order correction, ψ1(r, θ) and E1 to the wave-function and
energy respectively, satisfy

− �
2

2m
∇2ψ1(r, θ) = E0ψ1(r, θ) + E1ψ0(r, θ). (3.2)

In (r, θ) coordinate[
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

]
ψ1(r, θ) = −2mE1

�2
ψ0(r, θ).

(3.3)
We now expand

ψ1(r, θ) =
∑

p

φp(r) cos(pθ), (3.4)

whence

∑
p

[
∂2φp

∂r2
+

1
r

∂φp

∂r
+ (k2

ln − p2

r2
)φp

]
cos(pθ) =

−A1
2mE1

�2
Jl(klnr) cos(lθ). (3.5)

If p = l[
∂2φl

∂r2
+

1
r

∂φl

∂r
+
(
k2

ln − l2

r2

)
φl

]
= −A1

2mE1

�2
Jl(klnr)

(3.6)
and if p �= l[

∂2φp

∂r2
+

1
r

∂φp

∂r
+
(
k2

ln − p2

r2

)
φp

]
= 0. (3.7)

The boundary condition for the first order of correction in
∆r can be written as

0 = ψ0

(
R+ εR

∑
m

Cm cos(mθ)

)
+ ψ1(R)

= ψ0(R) + εR
∑
m

Cm cos(mθ)ψ′
0(R) + ψ1(R)

= AlεR
∑
m

Cm cos(mθ)J ′
l (klnR)kln cos(lθ) + ψ1(R)

=
1
2
AlεRJ

′
l (klnR)kln

∑
m

Cm [cos(m+ l)θ

+ cos(m− l)θ] +
∑

p

φp(R) cos(pθ), (3.8)

leading to

φp(R) = −1
2
AlεRJ

′
l (klnR)kln [Cp−l + Cp+l] . (3.9)

For p �= l, the solution φp(r) is seen to be BpJp(klnr) and
the boundary condition of equation (3.9) fixes the constant
Bp as

Bp = −1
2
AlεRkln

J ′
l (klnR)
Jp(klnR)

[Cp−l + Cp+l] . (3.10)

For p = l, on the other hand, the solution

φl = BlJl(klnr) + Pl(klnr),

where Pl(klnr) is the particular integral of equation (3.6).
Writing X = klnr, we need to find the particular inte-
gral of

[
∂2Pl

∂X2
+

1
X

∂Pl

∂X
+
(

1− l2

X2

)
Pl

]
= −A1

2mE1

�2

1
k2

ln

Jl(X).

(3.11)
Writing

Pl(X) = −E1

E0
Al

∑
s

bsX
s = −E1

E0
Alξ(X),

the boundary condition at X = klnR fixes E1 as

−E1

E0
ξ(X) = − ε

2
C2lklnRJ

′
l (klnR), (3.12)

since C0 = 0. Thus, there will be a correction at the first
order in ε, provided l is such that C2l �= 0. From our listing
of C2l we find that this will happen whenever l is an even
integer. Hence E1 �= 0 for l = 2, 4, 6, etc. This is the case
of parametric resonance. For these selected values of l, the
energy acquires a first order correction. This correction is
very strong and will interfere with the neighboring levels
which differ by unity. That level will not have a first or-
der correction. This is what can lead to level crossing in
a single particle non-circular quantum dot. Two electron
quantum dots show level crossing due to the coulomb re-
pulsion. Here a single quantum dot is capable of showing
the same effect due to change of boundary. The sensitiv-
ity to boundaries also occurs in classical dynamics of a
particle confined in a billiard.

The wave-function to this order is

ψ(r, θ) = AlJl(klnr) cos(lθ) +
∑
m �=l

BmJm(klnr) cos(mθ)

+ Pl(klnr) cos(lθ). (3.13)

Note that we do not have a problem with normalization
at this order because∫

Jl(X)Pl(X)XdX = 0.

Turning to the second order, we have

− �
2

2m

[
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

]
ψ2(r, θ) =

E0ψ2(r, θ) + E1ψ1(r, θ) + E2ψ0(r, θ). (3.14)

As before, we expand

ψ2(r, θ) =
∑
m

χm(r) cos(mθ),
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and inserting in equation (3.14)

∑
m

[
∂2

∂r2
+

1
r

∂

∂r
+ k2

ln − m2

r2

]
χm(r) =

− 2mE1

�2

⎡
⎣∑

m �=l

BmJm(klnr) cos(mθ) + Pl(klnr) cos(lθ)

⎤
⎦

− 2mE2

�2
AlJl(klnr) cos(lθ). (3.15)

To find the energy shift E2 at the second order, we need
to concentrate on the m = l case alone. In this case

[
∂2

∂X2
+

1
X

∂

∂X
+ 1 − l2

X2

]
χl(X) =

− E1

E0
Pl(X) − E2

E0
AlJl(X). (3.16)

We now need to find boundary condition on χl(r) at r =
R. This reads

0 = ψ0

(
R+ εR

∑
m

Cm cos(mθ)

)

+ ψ1

(
R+ εR

∑
m

Cm cos(mθ)

)
+ ψ2(R)

= ψ0(R) + εR
∑
m

Cm cos(mθ)ψ′
0(R)

+
ε2R2

2

∑
m1

Cm1 cos(m1θ)
∑
m2

Cm2 cos(m2θ)ψ′′
0 (R)

+ ψ1(R) + εR
∑
m1

Cm1 cos(m1θ)ψ′
1(R) + ψ2(R)

=
ε2R2

2

∑
m1,m2

Cm1Cm2 cos(m1θ) cos(m2θ)

×AlJ
′′
l (klnR)k2

ln cos(lθ)

+ εRkln

∑
m1

Cm1 cos(m1θ)

×
∑
m2

Bm2J
′
m2

(klnR) cos(m2θ)

+ εRkln

∑
m

Cm cos(mθ)P ′
l (klnR) cos(lθ)

+ χ(R) cos(lθ). (3.17)

Hence,

χ(R) = − εR
2
klnP

′
l (klnR)C2l

− εR

2
kln

∑
m1

Cm1Bl−m1J
′
l−m1

(klnR)

− εR

2
kln

∑
m1

Cm1Bl+m1J
′
l+m1

(klnR)

− ε2R2

8
k2

lnR
2J ′′

l (klnR)Al

×
∑
m1

[
C2

m1
+ Cm1C2l−m1 + Cm1C2l+m1

]
.

(3.18)

From equation (3.16), we note that solution χl(r) can be
written as

χl(r) = CJl(r) +Ql(r), (3.19)

where the particular integral Ql(r) is to be found as a
power series expansion

Ql(r) = −Al
E2

E0

∑
s

csr
s − E1

E0

∑
s

dsr
s

= −Al
E2

E0
ζ1(r) − E1

E0
ζ2(r). (3.20)

The boundary condition of equation (3.18), now fixes the
second order shift as

− E2

E0
ζ1(klnR) − 1

Al

E1

E0
ζ2(klnR) =

ε2

4
C2

2l(klnR)2

×
[
J ′

l (klnR)
klnR

+ J ′′
l (klnR)

]

+
ε2

4
(klnR)2

∑
m1

(C2
m1

+ Cm1C2l+m1)

×
[
J ′

l (klnR)J ′
l+m1

(klnR)
Jl+m1(klnR)

− J ′′
l (klnR)

2

]

+
ε2

4
(klnR)2

∑
m1

Cm1C2l−m1

×
[
J ′

l (klnR)J ′
l−m1

(klnR)
Jl−m1(klnR)

− J ′′
l (klnR)

2

]
. (3.21)
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Using equation (3.21), we have computed the first four
energy levels as

E00 =
�

2

2ma2
(2.4048)2

(πn
2

) Γ ( 2
n )

[Γ ( 1
n )]2

× [1 + 0.027955(n− 2)2
]
,

E10 =
�

2

2ma2
(3.382)2

(πn
2

) Γ ( 2
n )

×
[
Γ

(
1
n

)]2 [
1 + 0.062766(n− 2)2

]
,

E20 =
�

2

2ma2
(5.135)2

(πn
2

) Γ ( 2
n )

[Γ ( 1
n )]2

[1 − 2.1856923(n− 2)

+0.0540083(n− 2)2
]

[parametric resonance],

E01 =
�

2

2ma2
(5.52)2

(πn
2

) Γ ( 2
n )

[Γ ( 1
n )]2

× [1 + 0.00594753(n− 2)2
]
. (3.22)

4 Results and conclusion

4.1 Ground state energy and wave function

Using the expressions of equations (2.34) and (2.35), we
exhibit the calculated ground state energies in Table 2
indicating the efficacy of our approximations.

The accuracy of our numerical scheme can be gauged
by comparing the numerical results with the known exact
results for n = 1, 2 and ∞. In units of the exact ground
state of the particle in a circular box, the ground state for
n = 1 is 1.7080 while the numerics yields 1.6927 — an er-
ror of 0.9%. At n = 2, the numerical result is 0.9967 as op-
posed to the exact result of 1.0000 (an error of 0.3%) while
for n → ∞, the numerical determination gives 0.8516 as
compared to the exact answer of 0.8548 (error of 0.4%).
The numerical result presented here are for a grid size of
1
10 . We have checked that for a grid size of 1

20 and 1
30

the numerical results for n = 2 are 0.99913 and 0.99961
respectively and the corresponding errors are 0.087% and
0.04%. Thus by decreasing the grid size the computational
error can be substantially reduced. We have not tried to
go to an even smaller grid size because that is not wanted
right now by the accuracy of the analytical work. This
accuracy is sufficient for the purpose at hand, where we
wanted to explore how far a straightforward perturbative
calculation aided by constraints coming from known exact
solutions at some values of n can take us. It is interesting
to note that we can be within 2.5% of the true (numerical)
answer for a wide range of n (0.5 < n <∞), with the ac-
curacy close to or better than 1 percent over a significant
part of that range.

The accuracy of the model has also to be tested on
the wave-function by calculating the norm. The highest

Table 3. Calculated energy levels.

n E00 E10 E20 E01

1.6 6.4332 12.7942 54.9842 33.7767
1.8 6.0653 12.0127 39.7592 31.9287
2.0 5.7831 11.4379 26.3682 30.4704
2.2 5.5976 11.0864 14.4046 29.4667
2.4 5.4599 10.8585 3.3300 28.6661

Fig. 1. Energy level diagram for a free particle confined in
a super-circular box |x|n + |y|n = an (where n is a rational

number and a is a positive real number) in the unit of �
2

2ma2 .
The level E2,0 shows parametric resonance that leads to level
crossing.

deviation of the wave-function will occur when we go from
the circle to the square. Hence we focus on n = 1. The
first question to ask is has the wave-function vanishes on
the boundary. We consider three points A,B,C on the
square with (r, θ) coordinates as (a, 0), ( a√

2
, 0), (a, π

2 ). The
wave-functions are 0.011, 0.085 and 0.011 respectively. We
take three other points in the interior of the square. These
have the coordinates (a

2 , 0), ( a
2
√

2
, π

4 ), (a
2 ,

π
2 ). The norm of

the wave-functions at these points are 0.539, 0.735 and
0.529 as compared to 0.564, 0.798 and 0.564 which are
the exact values for the square. For these points the error
are 6.2%, 7.9% and 6.2% respectively. The reasonability
of this approach should provide an alternative window on
certain problems in quantum chemistry which have been
discussed in the introduction.

4.2 Excited state energies

Using the expressions of equation (3.22) we exhibit the
calculated energy levels as (in the unit of �

2

2ma2 ), see Ta-
ble 3.

As stated in Section 3, the level E2,0 shows parametric
resonance and is very strongly affected in comparison to
the other levels shown. This raises the possibility of level
crossing as shown in Figure 1. The observable effect will
be in a significant change of the corresponding spectral
lines.
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